
Appendix D Resource Variability Parameters

There are three basic resource variability parameters for renewables with variable resources
(i.e. wind and solar) that are calculated for each period in ReEDS before the linear program
optimization is conducted for that period. These include capacity value, operating reserve,
and surplus. For each, a marginal value is calculated, which applies to new installations in
the period, and an ‘‘old’’ value is calculated, which applies to all the capacity built in previous
periods. This section describes the statistical assumptions and methods used to calculate these
values.

These variable-resource parameters are calculated for a source from which the variable-
resource renewable energy (VRRE) is generated and a sink to which the energy is supplied. The
source is always a supply region. The user must specify the regional level for the sink. It can
be a balancing authority (BA), a regional transmission organization (RTO), a NERC region, or
an entire interconnect. The ‘‘old’’ values for these variable-resource parameters are calculated
for each sink but not for each source since the old value is a single value for all the variable
resource supplied to the sink.

D.1 Data inputs for the calculation of resource variability parameters

The inputs required for calculating the resource variability parameters describe the probability
distributions associated with loads, conventional generator availability, and VRRE generation.
For each, an expected value and standard deviation are calculated.

For loads the expected value, µL , is the same as the values used in the ‘‘LOAD_PCA’’ con-
straint. The standard deviation of the load, µL , is found from the load-duration curve of the
sink region.

For conventional generator availability, the expected value is the nameplate capacity times
1 minus the forced outage rate.

µC =
∑
q

CONVCAPq,r · (1 − foq)

Variance of conventional generator availability is calculated thus:

σ2
C =

∑
q

numplantsq,r · plantsize
2
q · foq · (1 − foq)

where
plantsizeq is the input typical size of a generator of type q

numplantsq,reg = CONVCAPq,r/plantsizeq

The probability distribution associated with conventional generator availability is compli-
cated by the fact that there are can be many conventional generators and each one’s availabil-
ity is a binomial random variable with probability (1 − foq) of being one. We largely avoid this
complication by first combining the random variables for conventional generator availability, C,
with loads, L, in the form of a random variable X where:

X = C − L

The expected value of X, µX , is the sum of the expected values of the other two random variables

µX = µC − µL

and, since C and L are statistically independent:
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σ2
X = σ2

C + σ2
L

σX =

√
σ2
C + σ2

L

where σ denotes standard deviation and σ2 is the variance.

We investigated several standard distributions for their ability to fit X. We considered only
those distributions that could be bounded below - Beta, Weibull, Gamma, Erlang, Rayleigh,
Triangular, Log-logistic, Pareto, Exponential, Uniform, Log-normal, Inverse, Gaussian, and
χ2 To do this we used empirical data from the ERCOT region of Texas and computed three
statistics of the goodness-of-fit for this data - χ2, Anderson-Darling, and Kolmogorov-Smirnov
statistics. We based the conventional generation data upon a random sampling of forced
generator outages, using empirical outage rate data obtained for ERCOT in 2005. The load
data is based upon a Markov chain model we developed from actual empirical data.

Table 25 ranks the distributions as to how well they fit the data relative to each of the three
statistics. The beta distribution provides the best fit for the Anderson-Darling statistic and the
second best fit for the other two statistics. The beta distribution has the additional advantage
that it is bounded both from below and above, similar to the data itself. Figure 9 visually shows
how well the PDF of the fitted beta distribution matches the actual data; note that the fit is
relatively better at the tails of the distributions which are the areas of greatest interest in our
calculations of the resource variability parameters that will be described later.

Table 25: Rankings of Distributions

Ranking Statistic
χ2 Anderson-Darling Kolmogorov-Smirnov

1 Triangular Beta Weibull
2 Beta Triangular Beta
3 Weibull Gamma Triangular
4 Gamma Log-normal Gamma
5 Log-normal Uniform Log-normal
6 Uniform Exponential Uniform
7 Exponential Weibull Exponential
8 Inverse-Gaussian Inverse-Gaussian Inverse-Gaussian

Thus we approximate the combined distribution for X = C − L as a beta distribution with
mean µX and standard deviation σX .

The statistical representation of the output of the VRREs is similar to that of X = C −
L, although perhaps more complicated due to resource variation, correlations between the
VRRE plants and technology change. The standard deviation associated with an individual
VRRE site is derived from the hourly data available from the Wind and Solar Integration Study
(WSIS) led by NREL (http://mercator.nrel.gov/wwsi) The standard deviation of the
generation within each ReEDS time slice is easily calculated by standard statistics. To perform
a distribution analysis similar to that performed on X , we randomly selected a number of wind
sites from the WSIS study and tested how well various standard distributions matched the data.
As with X , the beta distribution was a clear winner. Figure 10 shows the power output of, on
the left, a single wind site, and, on the right, the combined output of eight randomly selected
sites. Other random site selections produced similar charts. Both charts have been fitted with
beta probability distribution functions.

Future improvements in the performance of wind and solar technologies are captured in
ReEDS through increased capacity factors. These improved capacity factors translate directly
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Figure 9: Actual conventional capacity less load and fitted beta PDF

Figure 10: Wind farm power output from a single site (left) and combined output from eight
sites (right) with fitted beta PDFs
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into improvements in the mean of a VRRE plant’s generation output. ReEDS also estimates a
new standard deviation for a VRRE plant based on regressions that estimate the new standard
deviation as a function of the old standard deviation and the new capacity factor.

In the variable-resource parameters described below the input distributions must represent
the generation from all VRRE plants contributing to a sink region, not simply a single plant.
The mean value µR is easily calculated as the sum of the mean values of the output of the
individual contributing VRRE plants. The standard deviation is complicated by the fact that
the outputs of the VRRE plants are correlated with one another. For each ReEDS time slice, we
have used the WSIS data to develop a correlation matrix (Pkl ) of the Pearson correlation between
each possible pair k,l of region, class, and VRRE, e.g. the peak-time slice correlation matrix
has an entry for the correlation between peak-time slice generation from class 5 wind in region
3 and class 2 PV generation in region 14. This Pkl matrix is an input to ReEDS. The variance
of the VRRE arriving at a sink region r (σ2

Rr
) is then calculated from this correlation matrix Pkl

through the standard statistical formula:

σ2
Rr =

∑
k∈Rr

∑
l∈Rr

Pkl · σk · σl

where
Rr is the set of VRRE’s contributing to region r

Armed with the mean and standard deviation of all VRRE contributing to a region r, we now
have to assume a distribution for the VRRE generation. As with the conventional generation
and load, we again used the beta distribution to approximate the VRRE generation with mean
µR and standard deviation σR. This selection of the beta distribution was based on the facts that
the beta is a two-parameter distribution with support bounded by a minimum and maximum
level, i.e. for VRRE generation the minimum is zero and the maximum is the total nameplate
VRRE capacity.

With the probability distributions of the VRRE and of conventional output minus load de-
termined, we can now calculate the variable-resource parameters - capacity value, operating
reserve, and surplus.

D.2 Capacity Value

This is the capacity credit given to the VRRE contribution to meeting the reserve margin con-
straint in each sink region. It is a function of the amount and type of VRREs consumed in the
sink region, the dispersion of the VRRE plants contributing the energy, the electric load in the
sink region, the variability of the load and the amount and reliability of conventional capacity
contributing to the load in the sink region. Generally, as more VRREs are used by the sink
region, their capacity value decreases. And as more renewable energy from a particular source
is used, the marginal capacity value from that source decreases.

CVoldr For the total VRRE generation that is to be consumed in sink region r, the capacity
credit, CVoldr , is the amount of load that can be added in every hour without changing the
system reliability in sink region r, i.e. without changing the loss-of-load probability. This
added load is the effective load-carrying capability associated with the VRRE contributed to
the sink region. Generally, utilities desire to keep this loss-of-load probability close to the
equivalent of one day in 10 years or 2.4 hours per year, or per 8760 hours. This equates to a
loss-of-load probability of 2.74x10−4 = 2.4/8760.

The first step in estimating CVold is to determine when the maximum allowable loss of load
probability is reached without any VRRE in the system. To do this we use the random variable
X defined above as the sum of all the conventional generation capacity C available to the sink
region r, minus the load L in the sink region r.
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X = C − L

Without any VRRE in the system, the maximum allowable loss of load probability is reached
when B(x) = 2.74x10−4, where B(x) is the cumulative beta distribution function for the random
variable X.

The second step in finding CVold is to find a similar value when VRRE is included in the
system. To do this we define a new random variable Y as follows:

Y = X + R = C − L + R

where
Rr is the random variable representing the VRRE contribution to sink region r.

As before, the maximum allowable loss of load probability is reached when F (y) = 2.74x10−
4, where F (y) is the cumulative distribution function for the random variable Y. F (y) can be
determined by convolving the distributions for X and R. Once Y is determined, the capacity
value associated with R is simply Y - X, and the capacity value of the VRRE expressed as a
fraction of the total VRRE nameplate capacity, Rr , is

CVoldr = (Y − X )/Rr

Since convolving two random variables can be a computer intensive calculation and because
it must be done many times in a single ReEDS optimization, convolutions are done outside of
ReEDS for a range of points with the results saved in tabular format as a function of five
parameters—VRRE nameplate capacity divided by peak load, conventional nameplate capacity
divided by peak load, VRRE capacity factor, standard deviation of all VRRE generation delivered
to sink region r, and the standard deviation of conventional generation minus load (C − L).
During a ReEDS run this five-dimensional table is accessed by linear interpolation with these 5
independent inputs to find the capacity value of the VRRE capacity contributing to sink region
r, CVoldr .

CVmarc,i,r is the marginal capacity value associated with the addition of class c VRRE
capacity in a source region i delivered to a sink region r, is simply the difference in CVold before
and after the marginal VRRE addition, ∆Rc,i,r .

CVmarc,i,r = (CVoldr (Rr ) − CVoldr (Rr + ∆Rc,i,r ))/∆Rc,i,r

D.3 Operating Reserve Requirement

Operating reserve includes spinning reserve, quick-start capability, and interruptible load that
can be dispatched to meet unanticipated changes in loads and/or power availability. There
is no standard approach for estimating the level of operating reserve required. Some NERC
regions assume that operating reserve must be at least as large as the largest single system
contingency, e.g. the failure of a nuclear power plant. Others have reasoned that a system
should have enough operating reserve to meet 7% of peak load (reduced if hydro is available).
We assume in ReEDS that the normal operating reserve (NORr,m ) required by a sink region r is
proportional to the load (Lr,m ) and conventional generation (Gr,m ) in the region.

VRREs can induce a need for additional operating reserve beyond the usual requirement.
ReEDS calculates the total operating reserves induced by all load, conventional generation, and
VRREs in the system (TORr,m ) and the operating reserves induced at the margin (ORmarr,m ) by
the addition of an increment of VRRE capacity.
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TORr,m is the total operating reserve required in region r due to load, conventional gen-
eration, and all existing VRRE capacity contributing to sink region r (Rr ). By assuming that
the normal operating reserve is a 2-sigma reserve, we can estimate the sigma, σNORr,m , associ-
ated with the normal system operation (operating reserve required for load and conventional
generation) as:

NORr,m =
0.03 ·

(
Lr,m + Gr,m

)
2 · Lr,m

σNORr,m = NORr,m · (Lr,m − Rr )

Since the normal system issues that require the normal operating reserve occur indepen-
dently of the resource variability of VRREs, the variances of the two can be added to give the
variance of the total. The total operating reserve is then assumed to be twice the standard
deviation of the total.

TORr,m = 2 ·
√
σ2
NORr,m

+ σ2
Rr

where
σRr is assumed to be the standard variation of the output of all existing VRREs

contributing to sink region r.

ORmarc,i,r is the marginal operating reserve requirement induced by the next MW of class
c VRRE installed in region i that contributes generation to sink region r. It is calculated as
the difference in the operating reserve required with an increment ∆Rc,i,r of additional VRRE
capacity, minus that required with only the existing VRRE with the difference divided by the
incremental VRRE capacity ∆Rc,i,r .

ORmarc,i,r,m =
2

∆Rc,i,r
·

(√
σ2
NORr,m

+ σ2
Rr+∆Rc,i,r

−

√
σ2
NORr,m

+ σ2
Rr

)
D.4 Surplus

At high levels of VRRE penetration, there are times when the VRRE generation exceeds that
which can be used in the system. This ‘‘surplus’’ VRRE generation must then be curtailed.
ReEDS calculates the fraction of VRRE generation from existing VRRE plants (Surplusoldr ) that
is surplus as well as the fraction of generation from new VRRE plants (Surplusmarr ) that is
surplus. ReEDS uses these surplus values to reduce the useful energy contributed by VRREs,
making them less coss-effective generators.

SurplusOldr is the expected fraction of generation from all the VRREs consumed in sink
region r that cannot be productively used, because the load is not large enough to absorb both
the VRRE generation and the must-run generation from existing conventional sources. This
situation occurs most frequently in the middle of the night when loads are small, base-load
conventional plants are running at their minimum levels, and the wind is blowing.

To calculate Surplusoldr , we use the random variable Y defined in the capacity value dis-
cussion above as the must-run conventional base-load generation M minus the load L plus the
VRRE generation R.

Y = M − L + R

Next, we define the surplus VRRE at any point in time, S, as
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If Y < 0, S = 0
If Y > 0, S = Y

Then the expected surplus µS can be calculated from the density function of Y, g(y) as follows:

µS =

∫ ∞

−∞

sf (s)ds

µS =

∫ 0

−∞

sf (s)ds +

∫ ∞

0
sf (s)ds

µS = 0 +

∫ ∞

0
yg(y)dy

The density function of y can be found by convolving the density function of M − L together
with the density function of the VRREs, similar to that which was done for the calculation of
the VRRE capacity value above. However we found that the expected value of the surplus can
be well approximated assuming normal distributions for both M − L and R. With the normal
distribution assumption, the value of µS can be quickly found in ReEDS with the analytical
formula derived below:

Now if we assume, as we did in the CVmar and ORmar calculations above, that by the
central limit theorem, Y can be well approximated by a normal distribution, and we define the
standard normal variable Y’ as Y ′ = (Y − µY )/σY , then

Y = Y ′ · σY + µY , and
dY = σYdY

′

Thus

µS =

∫ ∞

0
yg(y)dy

µS =

∫ ∞

−µY /σY

(y′σY + µY ) · g(y′σY + µY ) · σYdy′

µS =

∫ ∞

−µY /σY

σ2
Y · y

′ · g(y′σY + µY )dy′ +
∫ ∞

−µY /σY

µY · σY · g(y′σY + µY )dy′

Assuming Y is normally distributed, as stated above:

µS =

∫ ∞

−µY /σY

σ2
Y · y

′

(
1

σY
√

2π

)
exp

(
(−y′σY + µY − µy)2

2σ2
Y

)
dy′

+

∫ ∞

−µY /σY

µY · σY

(
1

σY
√

2π

)
exp

(
(−y′σY + µY − µy)2

2σ2
Y

)
dy′

µS =

∫ ∞

−µY /σY

σY · y′
√

2π
exp

(
−y′2

2

)
dy′ +

∫ ∞

−µY /σY

µY
√

2π
exp

(
−y′2

2

)
dy′

µS =
σY
√

2π
exp

(
−µ2

Y

2σ2
Y

)
+ µY

(
1 − N0,1(−µY/σY )

)
Where N0,1 is the standard normal distribution with mean 0 and standard deviation 1.

Then Surplusoldr is the difference between the expected surplus with VRRE, µS and the
expected surplus were there no VRRE generation consumed in sink region r, µSN , divided by
the total VRRE capacity contributing to sink region r, Rr . Or
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Surplusoldr = (µS − µSN )/Rr

Normally µSN would be zero, as the conventional must-run units would not be constructed
in excess of the minimum load. However, with our assumption of a normal distribution for
Y, we do introduce some non-zero probability that Y could be positive even if there were no
VRREs, i.e. that the generation from must-run units could exceed load. Thus, it is important
to calculate µSN and to subtract it from µS to remove the bulk of the error introduced by the
normal distribution assumption. µSN is calculated in exactly the same way as µS, but with no
VRREs included.

Must-run conventional capacity is defined as existing available (i.e., not in a forced outage
state) coal and nuclear capacity in sink region r times a minimum turn-down fraction, MTDF .
The expected value of the must-run capacity of type q available at any given point in time, µMq ,
is thus:

µMq = CONVCAPq, r ∗ (1 − FOq) ∗MTDFq

where
CONVCAPq,r is the existing conventional capacity in sink region r of type q.

MTDFq is 0.45 for old (pre-2006) coal plants,

0.35 for new (post-2006) coal plants,

1.0 for nuclear plants.

SurplusMarc,i,r is the fraction of generation from a small addition ∆Rc,i,r of class c VRRE
installed in supply region i destined for sink region r that cannot be productively used because
the load is not large enough to absorb both the VRRE generation and the must-run generation
from existing conventional sources. It is calculated as:

Surplusmarc,i,r = (µSR+∆Rc,i,r − µS)/∆Rc,i,r

Where µSR+∆Rc,i,r is calculated in exactly the same way as µS, but with ∆Rc,i,r MW of VRRE added
in region i.
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